

Journal of Organometallic Chemistry 543 (1997) 245-247

Journal ofOrgano metallic Chemistry

Preliminary communication

Sequential H-migration reactions in the formation of $[Os_3(\mu_2-H)(\mu_2-PHMe)(CO)_{10}]$ and $[Os_3(\mu_2-H)_2(\mu_3-PMe)(CO)_9]$ during the reaction between the phosphinidene complex $[W(PMe)(CO)_5]$ and $[Os_3(\mu_2-H)_2(CO)_{10}]$

Florence A. Ajulu^{a,1}, François Mathey^b, John F. Nixon^{a,*}

^a School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK
^b DCPH, École Polytechnique, Palaiseau 91128 Cedex, France

Received 29 August 1996

Abstract

The transient phosphinidene complex [W(PMe)(CO)₅] reacts with the unsaturated $[Os_3(\mu_2-H)_2(CO)_{10}]$ cluster to afford $[Os_3(\mu_2-H)(\mu_2-PHMe)(CO)_{10}]$ and subsequently $[Os_3(\mu_2-H)_2(\mu_3-PMe)(CO)_9]$ via H-migration reactions involving both transfer from Os to P and from P to Os. © 1997 Elsevier Science S.A.

The chemistry of phosphinidenes (RP) which are analogous to the better-known carbenes has developed rapidly over the past decade [1]. Stable terminal phosphinidene complexes of the type [M(PR)(L_n)] are exemplified by [M(η^5 -C₅H₅)₂(PR)] and [M(η^5 -C₅Me₅)₂(PR)] (M = Mo, W; R = 2,4,6-Bu¹₃C₆H₂) [2–4] and more recently [Ta(PR)N₃N] (R = Ph, Cy, Bu^t; N₃N = (Me₃SiNCH₂CH₂)₃N) [5,6], which behave like Schrock-type carbenes.

Transient terminal phosphinidenes [M(PR)(CO)₅] (M

= Cr, Mo, W), which behave like Fischer-type carbenes, are generated from the corresponding 7-phosphanorbornadiene metal pentacarbonyl [7–9], readily insert into strained ring systems, and also undergo cycloaddition reactions with alkenes, alkynes, metal carbenes, and metal carbyne complexes [7–15].

Previously [16], we showed that $[W(PMe)(CO)_5]$ exhibits carbene-like behaviour in its ready addition across the Rh=Rh double bond of $[Rh_2(\eta^5 \cdot C_5 Me_5)_2(\eta \cdot CO)_2]$ to afford the three-membered ring, complex 1. We have now extended this type of addition reaction to the unsaturated complex $[Os_3(\mu_2-H)(CO)_{10}]$ (2), which formally contains an Os=Os double bond, and have also observed interesting additional H-migration reactions. Thus treatment of equimolar amounts of 2 and the 7-phosphanorbornadiene complex 3 in benzene at 55 °C (in the presence of 10% CuCl catalyst) gave sequentially two products $[Os_3(\mu_2-H)(\mu_2-PHMe)(CO)_{10}]$ (4)

^{*} Corresponding author.

¹ Present address: Department of Chemistry, University of Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(97)00097-1

and $[Os_3(\mu_2-H)_2(\mu_3-PMe)(CO)_9]$ (5), both unambiguously established by ³¹P and ¹H NMR spectroscopy.

The ¹H NMR spectrum of complex **4**, which is the first formed reaction product, exhibited the characteristic widely spaced doublet of quartets for the PH resonance (δ 6.15, ¹ J_{PH} = 413 Hz, ³ J_{HH} = 5.3 Hz); a doublet of doublets for the MeP resonance (δ 1.81, ² J_{PH} = 11.8 Hz, ³ J_{HH} = 5.3 Hz); and a doublet for the bridging hydride at -19.7 ppm (² J_{PH} = 16.0 Hz). The ³¹P NMR spectrum showed a resonance at -68.7 ppm consisting of the expected two doublets of quartets (see Fig. 1). When the reaction is extended, another complex (**5**) is formed, which exhibited a doublet in the ¹H NMR spectrum for the μ -PMe group (δ 2.9, ² J_{PH} = 13.8 Hz), and a doublet at -21.5 ppm for the two equivalent bridging hydride ligands (² J_{PH} = 10.3 Hz). The ³¹P NMR spectrum showed a triplet of quartets (δ_{p} =

Fig. 1. ³¹ P NMR spectrum of compound 4.

-105.3 ppm; ${}^{2}J_{\rm PH} = 13.8$ Hz, ${}^{2}J_{\rm PH} = 10.3$ Hz). All the NMR spectroscopic data for both 4 and 5 are in close agreement with those reported for several structurally related compounds described by Mays and coworkers [17] and Huttner and coworkers [18], who obtained both types of compounds from pyrolysis reactions of RPH₂ and osmium carbonyl clusters.

The mechanism of the reaction of the complexed phosphinidene $[W(PMe)(CO)_s]$ reaction with 2 presumably involves (i) migration of one of the H atoms from Os to P to afford 4, and (ii) H atom migration back from phosphorus to the cluster system, the second step being accompanied by CO displacement to produce 5. Previously, H-migration from bridging ligands to a cluster has been observed [19-21,23] and secondary phosphine substituted triosmium clusters of the type $[Os_3(CO)_{11}(PR^1R^2H)]$ are known to undergo deprotonation/protonation reaction sequences to form the phosphido bridged clusters $[Os_3(CO)_{10}(\mu-H)(\mu-PR^1R^2)]$ (R¹ $= R^{2} = H; R^{1} = Ph, R^{2} = H; R^{1}, R^{2} = Ph)$ [22]. It seems likely that the initial step in the reaction sequence may involve 6 in which $[W(PMe)(CO)_5]$ acts as a $2e^-$ donor to the triosmium cluster 2, as is well established in many reactions of 2 with other more conventional ligands, such as CNMe, CNPh, PPh₃, etc. [23,24]. Careful monitoring of the early stages of the reaction of 2 and 3 by ³¹P{¹H} NMR spectroscopy revealed a new singlet ($\delta = 8.6 \text{ ppm}$) which exhibits ¹⁸³W satellites (${}^{1}J_{PW} =$ 239 Hz) which can only be tentatively assigned to 6, since it disappears rapidly as the reaction proceeds.

Acknowledgements

We thank Dr. Maria D. Vargas (University of Campinas, Brazil) for helpful discussions, Mr. C. Dadswell for recording the NMR spectra, and the Luthuli Trust for a studentship (to F.A.A.).

References

- F. Mathey, in M. Regitz, O.J. Scherer (Eds.), Multiple Bonds and Low Coordination in Phosphorus Chemistry, Thieme, Stuttgart, 1990, p. 33.
- [2] P.B. Hitchcock, M.F. Lappert, W.-P. Leung, J. Chem. Soc., Chem. Commun. (1987) 1282.
- [3] R. Bohra, P.B. Hitchcock, M.F. Lappert, W.-P. Leung, Polyhedron 8 (1989) 1884.
- [4] E. Niecke, J. Hein, M. Nieger, Organometallics 8 (1989) 2290.
- [5] C.C. Cummins, R.R. Schrock, W.M. Davies, Angew. Chem., Int. Ed. Engl. 32 (1993) 756.
- [6] P.P. Power, Angew. Chem., Int. Ed. Engl. 32 (1993) 850.
- [7] A. Marinetti, C. Charrier, F. Mathey, J. Fischer, Organometallics 8 (1985) 2134.
- [8] A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Chem. Soc., Chem. Commun. (1982) 667.
- [9] A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Am. Chem. Soc. 104 (1982) 4484.

- [10] N. Hoa Tran Huy, J. Fischer, F. Mathey, Organometallics 7 (1988) 240.
- [11] N. Hoa Tran Huy, F. Mathey, Organometallics 6 (1987) 207.
- [12] N. Hoa Tran Huy, F. Mathey, L. Ricard, Tetrahedron Lett. 29 (1988) 4289.
- [13] N. Hoa Tran Huy, J. Fischer, F. Mathey, J. Am. Chem. Soc. 109 (1987) 3475.
- [14] N. Hoa Tran Huy, L. Ricard, F. Mathey, Organometallics 7 (1988) 1791.
- [15] N. Hoa Tran Huy, F. Mathey, Phosphorus, Sulfur, and Silicon 77 (1993) 69.
- [16] F.A. Ajulu, P.B. Hitchcock, F. Mathey, J.F. Nixon, J. Organomet. Chem. 444 (1993) C60.
- [17] F. Iwasaki, M.J. Mays, P.R. Raithby, P.L.C Taylor, P.J. Wheatley, J. Organomet. Chem. 213 (1981) 185.

- [18] K. Natajaran, L. Zsolnai, G. Huttner, J. Organomet. Chem. 220 (1981) 365.
- [19] A.J. Deeming, S. Hasso, M. Underhill, J. Organomet. Chem. 80 (1974) C53.
- [20] A.J. Deeming, S. Hasso, J. Organomet. Chem. 114 (1976) 313.
- [21] A.J. Deeming, S. Hasso, J. Organomet. Chem. 88 (1975) C21.
- [22] S.B. Colbran, P.T. Irele, B.F.G. Johnson, F.J. Lahoz, J. Lewis, P.R. Raithby, J. Chem. Soc., Dalton Trans. (1989) 2023; S.B. Colbran, B.F.G. Johnson, J. Lewis, R.M. Sorrell, J. Organomet. Chem. 296 (1985) C1.
- [23] R.D. Adams, N.M. Golembeski, J. Organomet. Chem. 101 (1979) 2579.
- [24] J.R. Shapley, J.B. Keister, M.R. Churchill, B.G. De Boer, J. Am. Chem. Soc. 97 (1975) 4145.